Limite de tg(πx)/2x
Calcule $$lim_{x\to 0}\frac{tg(\pi\cdot x)}{2x}$$. Solução: Adotamos a mudança de variável $$u(x)=\pi\cdot x$$, de modo a obtermos $$x = \frac{u}{\pi}$$. Observamos que $$u\to 0 \Longleftrightarrow x\to...
Calcule $$lim_{x\to 0}\frac{tg(\pi\cdot x)}{2x}$$. Solução: Adotamos a mudança de variável $$u(x)=\pi\cdot x$$, de modo a obtermos $$x = \frac{u}{\pi}$$. Observamos que $$u\to 0 \Longleftrightarrow x\to...
Funções Trigonométricas e Teorema do Confronto Teorema 1: As funções $$sen(x)$$ e $$cos(x)$$ são contínuas em todos os pontos de seus domínios. Teorema 2 (Limite...
Exercícios resolvidos de limites com funções trigonométricas: seno, cosseno, tangente, cosecante, secante e cotangente.
Calcule $$lim_{x\to 0}\frac{tg(x)}{x}$$. Solução: Sabendo que o limite fundamental trigonométrico é $$lim_{x\to 0}\frac{sen(x)}{x}=1$$, é útil escrever que $$\frac{tg(x)}{x}=\frac{sen(x)}{xcos(x)}=\frac{1}{cos(x)}\cdot\frac{sen(x)}{x}$$. Observe que $$lim_{x\to 0}\frac{1}{cos(x)}=1/1 = 1$$, então...
Calcule o limite, se existir, e justifique. $$\lim_{x\to p}\frac{tg(x-p)}{x^{2}-p^{2}}$$ , $$p\neq 0$$. Lista de Exercícios Resolvidos sobre Limites, acesse aqui! Solução: Basta observar que \[\frac{tg(x-p)}{x^{2}-p^{2}}=\frac{sen(x-p)}{x-p}\cdot\frac{1}{(x+p)cos(x-p)}\]....
Calcule o limite, se existir, e justifique os passos. $$\lim_{x\to 0}\frac{sen(3x)}{x}$$ Lista de Exercícios Resolvidos sobre Limites, acesse aqui! Solução:
Calcule o limite, se existir, e justifique. $$\lim_{x\to p}\frac{sen(x)-sen(p)}{x-p}$$, para $$x\neq p$$. Lista de Exercícios Resolvidos sobre Limites, acesse aqui! Solução: Substituamos o quociente de...
Calcule o limite, se existir, e justifique. Lista de Exercícios Resolvidos sobre Limites, acesse aqui! $$\lim_{x\to p}\frac{sen(x-p)}{x-p}$$ , $$p\neq 0$$. Solução: Note que, impondo $$u=x-p$$,...
Calcule o limite, se existir, e justifique. $$\lim_{x\to 0}\frac{x}{sen(x)}$$. Lista de Exercícios Resolvidos sobre Limites, acesse aqui! Solução: Observe que $$\frac{x}{sen(x)}=\frac{1}{\frac{x}{sen(x)}}$$. Além disso, o numerador...