• Racionalização – Exercícios Resolvidos

    Racionalize os denominadores. $$\frac{5}{\sqrt{7}}$$. Solução. $$\frac{1}{\sqrt{2}}$$. Solução. $$\frac{2}{\sqrt{3}-1}$$. Solução. $$\frac{1}{\sqrt[3]{12}}$$. Solução. $$\frac{8}{2\sqrt{2}}$$. Solução. $$\frac{2}{\sqrt{3}}$$. Solução. $$\frac{4}{2\sqrt{2}}$$. Solução. $$\frac{\sqrt{2}}{\sqrt{2} + 1}$$. Solução. $$\frac{1}{\sqrt{5} + \sqrt{2}}$$. Solução....

  • Racionalização – Exercício 5

    Racionalize $$\frac{8}{2\sqrt{2}}$$. Solução: Multiplicamos a fração toda por $$\frac{\sqrt{2}}{\sqrt{2}}$$, então obtemos \[\frac{8}{2\sqrt{2}}\cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{8\sqrt{2}}{2\cdot(\sqrt{2})^{2}}=\] \[\frac{8\sqrt{2}}{4}=2\sqrt{2}.\]  

  • Racionalização – Exercício 4

    Racionalize $$\frac{1}{\sqrt[3]{12}}$$. Solução: Como apareceu uma raiz cúbica, precisaremos multiplicar a fração por $$\frac{\sqrt[3]{12}}{\sqrt[3]{12}}$$ duas vezes, uma vez que $$(\sqrt[3]{12})^{3}=12$$. Assim, \[\frac{1}{\sqrt[3]{12}}\cdot \frac{\sqrt[3]{12}}{\sqrt[3]{12}}\cdot \frac{\sqrt[3]{12}}{\sqrt[3]{12}}=\] \[\frac{(\sqrt[3]{12})^{2}}{12}...

  • Racionalização – Exercício 3

    Racionalize $$\frac{2}{\sqrt{3}-1}$$. Solução: Para eliminarmos a raiz do denominador, basta multiplicarmos a fração toda por (√3+1), uma vez que o produto (√3+1)(√3-1)=3-1 = 2 (você...

  • Racionalização – Exercício 2

    Racionalize $$\frac{1}{\sqrt{2}}$$. Solução: Precisamos multiplicar a fração toda por √2: \[\frac{1}{\sqrt{2}}= \frac{1}{\sqrt{2}}\cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{(\sqrt{2})^{2}}=\] \[\frac{\sqrt{2}}{2}.\]

  • Racionalização – Exercício 1

    Racionalize $$\frac{5}{\sqrt{7}}$$. Solução: Multiplicamos a fração toda por √7: \[\frac{5}{\sqrt{7}} = \frac{5}{\sqrt{7}}\cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{5\sqrt{7}}{(\sqrt{7})^{2}}=\] \[\frac{5\sqrt{7}}{7}.\]