Suponha que um líquido seja produzido por certo processo químico e que a função custo total C(x) seja dada por $$C(x)=6+4\sqrt{x}$$, em que x representa o volume do líquido. Calcule
(a) o custo marginal quando 16 litros são produzidos.
(b) e o número de litros produzidos quando o custo marginal é $ 0,40 por litro.
Solução:
Derivando a função custo, obtemos $$C_{mg}=(6+4x^{1/2})’ = 2x^{-1/2}$$.
a) Substituindo $$x=16$$, obtemos $$C_{mg}(16) = 2\cdot 16^{-1/2} = 2\cdot 4^{-1} = 0,5$$ reais por litro.
b) Substituindo $$0,4=C_{mg}=2x^{-1/2}$$, obtemos
\[0,2 = x^{-1/2}\Longrightarrow x = 1/0,2^{2}= 25.\]
Então 25 litros produzidos têm um custo marginal de 0,4 reais por litro.
0 comentários