ITAMatrizes e Determinantes
0

ITA 2021 – Q. 48

Seja A uma matriz real quadrada de ordem 2 tal que

\[A\left[\begin{array}{cc} 1&2\\3&4 \end{array}\right]=\left[\begin{array}{cc} 1&x\\y&0 \end{array}\right]\quad\text{e} \]

\[A\left[\begin{array}{cc} 2&3\\4&5 \end{array}\right]=\left[\begin{array}{cc} x&3\\y+1&1 \end{array}\right]. \]

Então, o traço da matriz A é:

a) 0
b) 1
c) 2
d) 3
e) 4



Solução:

Seja $$A=\left[\begin{array}{cc} a&b\\c&d \end{array}\right]=\left[\begin{array}{cc} 1&x\\y&0 \end{array}\right]$$. Considerando apenas os elementos dos produtos matriciais que são números, a primeira equação matricial, fornece-nos $$a+3b=1$$ e $$2c+4d=0$$; a segunda equação matricial fornece-nos $$3a+5b=3$$ e $$3c+5d=1$$.

Resolvendo o sistema (a,b): $$a= 1-3b$$, então $$3-9b+3b = 3$$, o que implica $$b=0$$ e $$a=1$$.

Resolvendo o sistema (c,d): $$c = -2d$$, então $$-6d+5d = 1$$, o que implica $$d=-1$$ e $$c = 2$$.

O traço é a soma dos elementos da diagonal principal de uma matriz quadrada, então

\[tr(A)=tr(\left[\begin{array}{cc} 1&0\\2&-1 \end{array}\right])=1+(-1)=0.\]

Resposta: a)

Tags: 2021, produto de matrizes, Traço da Matriz

Você pode se interessar também por…

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Preencha esse campo
Preencha esse campo
Digite um endereço de e-mail válido.
Você precisa concordar com os termos para prosseguir

Veja também