Questão
(VUNESP 2018/PM-SP) Em certo dia, em uma empresa onde trabalham 36 pessoas, a razão do número de pessoas resfriadas para o número de pessoas não resfriadas era 2/7. No dia seguinte, constatou-se que mais uma dessas pessoas estava resfriada. Assim, a razão do número de pessoas resfriadas para o número de pessoas não resfriadas passou a ser
a) 4/7
b) 1/2
c) 3/7
d) 1/3
e) 1/4
Solução: Primeiro vamos escrever algebricamente as frases do enunciado, sendo R: resfriadas e N: não resfriadas.
a) R + N = 36
b) $$\frac{R}{N} = \frac{2}{7} \longrightarrow R = \frac{2}{7} N$$.
Agora vamos descobrir R e N substituindo b) em a). $$\frac{2}{7} N + N = 36 \longrightarrow \frac{9}{7} N = 36 \longrightarrow N = \frac{7}{9} 36 \longrightarrow N = 28$$ $$R + 28 = 36 \longrightarrow R = 36 – 28 \longrightarrow R = 8$$ O enunciado diz que aumentou em 1 o números de resfriados, portanto R’ = 9 e N’ = 27. A nova razão será: $$\frac{R’}{N’} = \frac{9}{27} = \frac{1}{3}$$
Resposta: letra D.
Questão
(VUNESP 2016/CM GUARATINGUETÁ) Em uma caixa com 144 lápis, a razão entre os lápis com ponta e os lápis sem ponta é 3/5. A diferença entre o número de lápis sem ponta e o número de lápis com ponta é
a) 72. b) 65. c) 54. d) 43. e) 36.
Solução: Vamos escrever as equações, sendo C: lápis com ponta e S: lápis sem ponta.
a) $$C + S = 144$$ b) $$\frac{C}{S} = \frac{3}{5} \longrightarrow C = \frac{3}{5} S$$.
Substituindo b) em a), temos $$\frac{3}{5} S + S = 144 \longrightarrow \frac{8}{5} S = 144 \longrightarrow S = 90$$ $$C + 90 = 144 \longrightarrow C = 54$$ Logo, S – C = 90 – 54 = 36 Resposta: letra E.
Questão
(VUNESP 2016/FUNDUNESP) Em um reservatório com formato de paralelepípedo reto-retângulo, a razão entre as medidas de comprimento e de largura é de 12 para 7, nessa ordem, sendo a diferença entre elas igual a 2 m.
Usado em um sistema de captação de águas pluviais, esse reservatório, quando totalmente cheio, pode armazenar 26,88 m³ de água. Desse modo, é correto afirmar que a medida em metros da altura desse reservatório é igual a
a) 1,5. b) 1,8. c) 2,0. d) 2,2. e) 2,5.
Solução: Temos as seguintes equações do enunciado: a) $$\frac{c}{l} = \frac{12}{7} \longrightarrow c = \frac{12}{7} l$$ b) $$c – l = 2$$.
Substituindo a) em b) temos $$\frac{12}{7} l – l = 2 \longrightarrow \frac{5}{7} l = 2 \longrightarrow l = 2,8\, m$$ $$c – 2,8 – 2 \longrightarrow c = 4,8\, m$$ O volume é $$V = c*l*a = 26,88 m^{³}$$, portanto $$4,8*2,8*a = 26,88 \longrightarrow a = 2\, m$$ Resposta: letra C.
0 comentários