OndulatóriaPUC - Campinas
0

PUC – Campinas 2024 – Questão 31 (Medicina)

A figura mostra dois alto-falantes, A e B, voltados um para o outro e distantes 20 m entre si, os quais emitem ondas sonoras de mesma frequência, mesma amplitude e em fase.




Um observador, inicialmente localizado no ponto médio M do segmento de reta que une os dois alto-falantes, percebe um som de máxima intensidade, pois nesse ponto ocorre interferência construtiva. Ao se deslocar sobre o segmento de reta que une os dois alto-falantes, no sentido do alto-falante B, esse observador percebe, pela primeira vez, um som de mínima intensidade quando está a 1,5 m de M. Isso significa que, nesse ponto, ocorre interferência destrutiva. Ao continuar seu deslocamento até chegar ao alto-falante B, o observador perceberá outros pontos de mínima intensidade sonora quando estiver a distâncias do ponto M iguais a

(A) 4,5 m e 9,0 m, apenas.
(B) 4,5 m e ,5 m, apenas.
(C) 3,0 m e 9,0 m, apenas.
(D) 3,0 m, 6,0 m e 9,0 m, apenas.
(E) 3,0 m, 4,5 m, 6,0 m, 7,5 m e 9,0 m.



Solução:




O enunciado diz que o observador se encontra no ponto vermelho da figura acima. Nesse ponto nós temos o ventre da onda, ou seja, o ponto máximo de intensidade do som. Quando o observador caminha 1,5 m em direção ao alto-falante B, ele se encontra no ponto amarelo, que é o nó da onda, lugar do ponto menos intenso de som. Podemos dizer, então, que o tamanho de um ventre é de 3,0 m. Portanto, a partir do ponto amarelo, temos que somar 3,0 para descobrir qual o próximo ponto de mínima intensidade. Como temos 10,0 m até o alto-falante B, precisam ser pontos dentro dessa distância.

Teremos então:

Segundo ponto: 1,5 + 3,0 = 4,5 m

Terceiro ponto: 4,5 + 3,0 = 7,5 m

Resposta: letra B.

Tags: 2024

Você pode se interessar também por…

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Preencha esse campo
Preencha esse campo
Digite um endereço de e-mail válido.
Você precisa concordar com os termos para prosseguir

Veja também