Transformações Lineares – Exercício 21
Sejam $$V$$ e $$W$$ espaços vetoriais sobre o corpo $$F$$, e seja $$U$$ um isomorfismo de $$V$$ em $$W$$. Demonstrar que $$\phi: T\mapsto UTU^{-1}$$ é...
Sejam $$V$$ e $$W$$ espaços vetoriais sobre o corpo $$F$$, e seja $$U$$ um isomorfismo de $$V$$ em $$W$$. Demonstrar que $$\phi: T\mapsto UTU^{-1}$$ é...
Definição Dados os subespaços vetorias $$V_{i}$$ de um espaço $$V$$, define-se $$V=V_{1}\oplus V_{2}\oplus …\oplus V_{n}$$ como a soma direta interna, se, e somente se, todo...
Seja 𝑇:𝒳→𝒴 um operador linear cuja inversa existe(inversível). Se o conjunto $$\{𝑥_{1},…,𝑥_{𝑛} \}$$ é um conjunto linearmente independente em 𝒳, mostre que o conjunto $$\{𝑇𝑥_{1},…,𝑇𝑥_{𝑛}\}$$...
Seja $$E$$ um espaço vetorial de dimensão finita. Dado um operador linear $$A:E\longrightarrow E$$, defina o novo operador $$T_{A}:\mathcal{L}(E)\longrightarrow\mathcal{L}(E)$$, pondo $$T_{A}=AX$$, para todo $$X\in\mathcal{L}(E)$$. Prove...