Limites – Exercício 23
Prove que limx→0+ 1/ (1+a1/x) =0. Solução:
Prove que limx→0+ 1/ (1+a1/x) =0. Solução:
Calcule o limite, se existir; justifique as passagens. $$\lim_{x\to 0}\frac{|x^{2}-x|}{x}$$ Lista de Exercícios Resolvidos sobre Limites, acesse aqui! Solução:
Seja $$f(x)=\left\{\begin{array}{rc} 1-x^{2},&\mbox{se}\quad x\neq 1,\\ 2, &\mbox{se}\quad x=1. \end{array}\right. $$ Lista de Exercícios Resolvidos sobre Limites, acesse aqui! Calcule os limites, caso existam, e, se...
Calcule os limites, caso existam, e, se não existirem, justifique. Lista de Exercícios Resolvidos sobre Limites, acesse aqui! a) $$\lim_{x\to 1^{+}}\frac{|x-1|}{x-1}$$ b) $$\lim_{x\to 1^{-}}\frac{|x-1|}{x-1}$$ c) $$\lim_{x\to...
Definição de Limites Laterais Consideramos uma função real $$f:A\longrightarrow \mathbb{R}$$, com $$A\subset\mathbb{R}$$, um intervalo. Definição: Dizemos que a função tem limite à direita, e que...