Álgebra Linear – Projeção (exercício 1)
Questão 1 Suponha que o espaço vetorial de dimensão finita $$E$$ admita a decomposição $$E=\bigoplus_{j=1}^{k} F_{j}$$, como soma direta de subespaços vetoriais. Para cada $$i\in\{1,2…,k\}$$,...
Questão 1 Suponha que o espaço vetorial de dimensão finita $$E$$ admita a decomposição $$E=\bigoplus_{j=1}^{k} F_{j}$$, como soma direta de subespaços vetoriais. Para cada $$i\in\{1,2…,k\}$$,...
Seja $$\varphi$$ um operador linear, sobre o espaço vetorial $$V$$, tal que $$\varphi^{2}=I_{d}$$ (identidade). Mostre que $$V=U\oplus W$$,com $$U=\{v\in V;\varphi(v)=v\}$$, e $$W=\{v\in V;\varphi(v)=-v\}$$. Solução: $$U$$...
Questões Anteriores Exercício Seja $$f^{*}:\mathbb{R}\longrightarrow E$$ a adjunta do funcional linear $$f: E\longrightarrow \mathbb{R}$$. Prove que $$v=f^{*}(1)$$ é vetor de $$E$$ que corresponde a $$f$$...
Seja $$C(A)$$ o conjunto dos operadores lineares $$X: E\longrightarrow E$$ que comutam com o operador $$A\in\mathcal{L}(E)$$, isto é, $$XA=AX$$. Prove que $$C(A)$$ é um...