Álgebra Linear – Matrizes – Autovalores (exercício 2)
Questão Seja H uma matriz hermitiana. Prove que: (a) Se $$H = A + iB$$, com $$A$$ e $$B$$ reais, A é simétrica, e B...
Questão Seja H uma matriz hermitiana. Prove que: (a) Se $$H = A + iB$$, com $$A$$ e $$B$$ reais, A é simétrica, e B...
Seja A uma matriz hermitiana de ordem $$n$$, com coeficientes complexos. Defina $$r(x)=x^{*}Ax$$. Prove que $$max_{||x||=1}\{r(x)\}=max\{\Lambda(A)\}$$. Prove o resultado análogo para o mínimo. Observação: $$\Lambda(A)$$...
Sejam E espaço de Banach, F espaço normado e $$T_{n}$$ ∈ $$\mathcal{L}(E, F)$$, tal que $$T_{n}(x)$$ é Cauchy em F para todo x ∈ E....
Questão Prove que a matriz de Householder, $$H=I-\frac{2}{|u|^{2}}\cdot u\otimes u^{T}$$, é uma matriz ortogonal. Observação: O produto exterior é igual à matriz produto de coordenadas...
Teorema: Seja uma matriz $$A\in\mathcal{M}({\mathbb{R}})_{m\times n}$$, com $$m<n$$. Então o sistema linear $$Ax=0$$ admite uma solução não trivial (não nula). Demonstração: Passo 1 Por indução,...
Exercício Seja $$d: M\times M\longrightarrow \mathbb{R}$$ uma função tal que $$d(x,y)=0 \Longleftrightarrow x=y$$ e $$d(x,z)\leq d(x,y)+d(z,y)$$. Prove que $$d$$ é uma métrica. Solução: a) Provaremos...
Exercício Dada uma sequência de pontos, $$(x_{1},…,x_{n})$$, num espaço métrico $$(S,d)$$, prove que $$d(x_{1},x_{n})\leq d(x_{1},x_{2})+…+d(x_{n-1},x_{n})$$. Solução: Provemos que a desigualdade é válida para $$n=4$$, com...
Questões Anteriores Exercício Seja $$f^{*}:\mathbb{R}\longrightarrow E$$ a adjunta do funcional linear $$f: E\longrightarrow \mathbb{R}$$. Prove que $$v=f^{*}(1)$$ é vetor de $$E$$ que corresponde a $$f$$...
Questão Seja $$n$$ um inteiro positivo que não é primo. Mostre que o anel $$(\mathbb{Z}/n\mathbb{Z})$$ não é um domínio. Solução: Podemos escolher $$a,b\in\mathbb{Z}$$, distintos e...
Questão Seja $$A:E\longrightarrow F$$ uma transformação linear entre espaços vetoriais de dimensão finita munidos de produto interno. Prove: i) Se $$A$$ é sobrejetiva, então $$AA^{*}:F\longrightarrow...
Questão Prove que, para todo $$X\in\mathbb{R}$$, vale $$\overline{X}=X\cup \partial(X)$$. Conclua que $$X$$ é fechado se, e somente se, $$X\supset \partial(X)$$. Solução: Se $$x\in X$$, então...
Situação: camada de argila mole de 10 m. Na fronteira superior existe uma camada de areia compacta. Na fronteira inferior existe rocha impermeável. A figura...