Functors – Exercise 1

1 min


0

Show that functors preserve isomorphism. If $$a\sim a’$$ in $$\mathcal{C}$$, then $$F(a)\sim F(a’)$$ in $$\mathcal{H}$$, with $$F:\mathcal{C}\longrightarrow\mathcal{H}$$.

Solution:
Let $$f:a\longrightarrow a’$$ be a isomorphism with inverse $$f^{-1}:a’\longrightarrow a$$. By definition of functors, we have $$F(Id_{a})=Id_{F(a)}$$ and $$F(f^{-1})\circ F(f)=F(f^{-1}\circ f)$$. Thus,

\[F(f^{-1})\circ F(f)=F(f^{-1}\circ f)=F(Id_{a}).\]

The same holds for $$F(f\circ f’)=F(Id_{a’})$$.

Therefore $$F(f):F(a)\longrightarrow F(a’)$$ is an isomorphism.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *