Progressão Geométrica – Exercício 10

1 min


0

(Mackenzie) Na sequência geométrica (x²,x, log(x)), de razão q, x é um número real e positivo. Então, log(q) vale

a) 1
b) -1
c) -2
d) 2
e) 1/2

Solução:

O termo central é resultado da raiz quadrada do produto do seu antecessor pelo seu sucessor. Neste caso,

\[x=\sqrt{x^{2}\cdot log(x)}\Longrightarrow x^{2}=x^{2}log(x).\]

Como $x\neq 0$$, temos $$log(x)=1$$, donde se conclui que $$10^{1}=x=10$$.

A razão é igual ao número dividido pelo seu antecessor, sempre! Então $$q=\frac{x}{x^{2}}$$, logo $$q=\frac{1}{x}=\frac{1}{10}=0,1$$.

Daqui, $$log(q)=log(0,1)=-1$$.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *