UERJ 2017 – 2º Exame de Qualificação – Q.27

2 min


0

No plano cartesiano a seguir, estão representados o gráfico da função definida por f (x) = x² + 2, com x ∈ IR , e os vértices dos quadrados adjacentes ABCD e DMNP.

Acesse outras questões corrigidas da prova aqui!


Observe que B e P são pontos do gráfico da função f e que A, B, D e M são pontos dos eixos coordenados. Desse modo, a área do polígono ABCPNM, formado pela união dos dois quadrados, é:

a) 20
b) 28
c) 36
d) 40

Solução:

O ponto B corresponde ao vértice (ponto de mínimo) desta parábola. Queremos obter o $$y_{v}$$, a fim de encontrarmos a altura daquele quadrado.

Note que $$f(x)=x^{2}+2$$, então $$a=1$$, $$b=0$$ e $$c=2$$.

Para isso, basta fazer

\[y_{v}=-\frac{-\Delta}{4a}=-\frac{b^{2}-4ac}{4a}=-\frac{-8}{4\cdot 1}=2\].

Portanto o lado do quadrado ABCD é 1. O ponto P terá coordenadas (2,y). Para calcular sua coordenada $$y$$, basta substituir $$x=2$$ na parábola, pois P está sobre a parábola, portanto satisfaz a equação dela.

\[f(1)=2^{2}+2=6\].

O ponto P é tal que P=(1,6). Logo o quadrado DPNM tem lado medindo 3.

\[A_{total}=A_{ABCD}+A_{DPNM}=2^{2}+6^{2}=40\]

Resposta: d)


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *