UNESP 2015 – 1ª Fase – Q. 77

3 min


0

As figuras 1 e 2 representam uma pessoa segurando uma pedra de 12 kg e densidade $$2\cdot 10^{3}\, kg/m^{3}$$, ambas em repouso em relação à água de um lago calmo, em duas situações diferentes. Na figura 1, a pedra está totalmente imersa na água e, na figura 2, apenas um quarto dela está imerso. Para manter a pedra em repouso na situação da figura 1, a pessoa exerce sobre ela uma força vertical para cima, constante e de módulo $$F_{1}$$. Para mantê-la em repouso na situação da figura 2, exerce sobre ela uma força vertical para cima, constante e de módulo $$F_{2}$$.

Considerando a densidade da água igual a $$10^{3}\, kg/m^{3}$$ e $$g = 10 m/s^{2}$$, é correto afirmar que a diferença $$F_{2} – F_{1}$$, em newtons, é igual a

(A) 60.
(B) 75.
(C) 45.
(D) 30.
(E) 15.

Confira nossa lista de Exercícios de Força Peso

Solução:

Na figura 1, a força peso aponta para baixo, enquanto a força $$F_{1}$$ e o empuxo apontam para cima. Como a pedra está em repouso, as forças se igualam

\[E_{1} + F_{1} = P \longrightarrow d\cdot g\cdot V + F_{1} = m\cdot g \longrightarrow 10^{3}\cdot 10\cdot \frac{12}{2\cdot 10^{3}} + F_{1} = 12\cdot 10 \longrightarrow F_{1} = 60\, N\]

Na figura 2, a força peso aponta para baixo, enquanto a força $$F_{2}$$ e o empuxo apontam para cima. Como a pedra está em repouso, as forças se igualam

\[E_{2} + F_{2} = P \longrightarrow d\cdot g\cdot \frac{V}{4} + F_{2} = m\cdot g \longrightarrow 10^{3}\cdot 10\cdot \frac{12}{4\cdot 2\cdot 10^{3}} + F_{2} = 12\cdot 10 \longrightarrow F_{2} = 105\, N\]

Portanto $$F_{2} – F_{1} = 105 – 60 = 45\, N$$

Resposta: letra C.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *