Categories – Exercise 1

1 min


0

[Two-out-of-three property]  Let f: A→B and g: B→ C be two morphisms. If $$g$$ and $$gf$$ are isomorphisms, then so is f$$.

Solution:

There exists h: C→A such that $$(gf)\circ h = I_{C}$$. By hypothesis, $$g$$ is an isomorphism, so

\[(gf)\circ h = I_{C}\Longrightarrow\]

\[g^{-1}(gf)\circ h = g^{-1}I_{C}=g^{-1} \Longrightarrow\]

\[f\circ h \circ g= g^{-1}g=I_{C}\Longrightarrow\]

\[f\circ h=I_{C}.\]

We have the same script for the left inverse:

\[h\circ (gf) = I_{A}\]

From the uniqueness of $$f^{-1}$$, $$f^{-1}=(h\circ g)$$.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *