(UFJF-MG) Sobre os elementos do conjunto solução da equação |x²| – 4|x| – 5 = 0, podemos dizer que
A) são um número natural e um número inteiro.
B) são números naturais.
C) o único elemento é um número natural.
D) um deles é um número racional, o outro é um número irracional.
E) não existem, isto é, o conjunto solução é vazio.
Solução:
Faremos a mudança de variável $$t=|x|$$. Assim, nossa equação em $$t$$ é $$t^{2}-4t-5=0$$. Por Bhaskara, temos
\[t=\frac{4\pm\sqrt{36}}{2}=\frac{4\pm 6}{2}=2\pm 3.\]
Temos $$t_{1}=5$$ e $$t_{2}=-1$$. É claro que $$|x|=t_{2}=-1$$ é absurdo, pois o módulo sempre terá resultado positivo. Assim, a única solução possível é $$|x|=5$$. Daqui, há duas possibilidades: ou $$x=5$$ ou $$x=-5$$.
Resposta: a)
0 comentários