Função do 1º Grau – Exercício 14

2 min


0

Considere a figura seguinte, onde um dos lados do trapézio retângulo se encontra apoiado sobre o
gráfico de uma função f. Sabendo-se que a área da região sombreada é 12 cm², a lei que define f é:

A) y = 2x – 1
B) y = –2x + 1
C) y = 2x/3 + 1
D) y = 5x/2 + 1
E) y = 2x + 1

Solução:
1) Podemos decompor o trapézio destacado em duas figuras: um retângulo de base com 3 cm e altura com 1 cm; um triângulo retângulo de base com 3 cm e altura desconhecida (x).

A área total será a soma das áreas das duas figuras. O retângulo tem área de $$3\cdot 1 = 3$$; o triângulo tem área de $$\frac{3\cdot x}{2} = 1,5x$$, logo $$1,5x+3 = 12$$.

Daqui, $$1,5x = 9$$, então $$x = 6$$ cm.
A altura do trapézio será a soma das alturas do retângulo e do triângulo, que é igual a $$1+6 = 7$$ cm.
A coordenada que encerra o trapézio é (3,7).

2) Dadas as coordenadas (0,1) e (3,7), podemos calcular a equação da reta que contém a base superior do trapézio. Lembre-se de que $$y=ax+b$$, então temos duas equações:

  • 1 = a.0 + b;
  • 7 = 3a + b.

A primeira equação fornece b = 1. Substituindo tal valor na segunda, teremos $$3a + 1 = 7$$, logo $$3a=6$$, e $$a=6/3=2$$.

A equação será $$y = 2x + 1$$.

 

 


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *