Progressão Geométrica – Exercício 16

2 min


0

(UFRGS-RS–2016) Considere o padrão de construção representado pelos triângulos equiláteros a seguir.

O perímetro do triângulo da etapa 1 é 3 e sua altura é h; a altura do triângulo da etapa 2 é metade da altura do triângulo da etapa 1; a altura do triângulo da etapa 3 é metade da
altura do triângulo da etapa 2 e, assim, sucessivamente.

Assim, a soma dos perímetros da sequência infinita de triângulos é

A) 2.
B) 3.
C) 4.
D) 5.
E) 6.

Solução:

Da geometria, sabemos que a altura (h) de um triângulo equilátero relaciona-se com seu lado (L) por meio da fórmula l=233h. Também sabemos que o perímetro do triângulo equilátero é p=3l, então, com as duas fórmulas, concluímos que p=23h().

Além disso, de acordo com o enunciado, as alturas são reduzidas pela metade a cada novo triângulo, portanto a sequência de perímetros também é reduzida pela metade, uma vez que (p/2)=23(h/2), então os perímetros formam uma progressão geométrica de razão q = 2 e termo inicial a1 = 3.

Usando a fórmula da PG infinita, temos

s=3121=6.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *