FUVEST (2017) – Física (2º dia – 2ª fase) – Q. 15

<![CDATA[ 3 min


0

Um atleta de peso 700 N corre 100 metros rasos em 10 segundos. Os gráficos dos módulos da sua velocidade horizontal, v, e da sua aceleração horizontal, a, ambas em função do tempo t, estão na página de respostas. Determine

a) a distância d que o atleta percorreu durante os primeiros 7 segundos da corrida;

b) o módulo F da componente horizontal da força resultante sobre o atleta no instante t = 1 s;

c) a energia cinética E do atleta no instante t = 10s;

d) a potência mecânica média P utilizada, durante a corrida, para acelerar o atleta na direção horizontal.

Note e adote: Aceleração da gravidade = $$10 m/s^{2}$$

Confira nossa Lista de Exercícios Resolvidos de Energia

Solução:

a) O deslocamento final, de 7 a 10 s é uniforme, portanto temos

$$v = \frac{\Delta S}{\Delta t} \longrightarrow 11 = \frac{\Delta S}{3} \longrightarrow \Delta S = 33\, m$$.

Como a corrida toda tem 100 m, podemos dizer que

$$d = 100 – 33 \longrightarrow d = 67\, m$$.

b) No instante 1 s, a aceleração é

$$4\, m/s^{2}$$.

Como o peso do atleta é 700 N e temos a aceleração da gravidade $$10\, m/s^{2}$$, sua massa será

$$m = \frac{P}{g} \longrightarrow m = \frac{700}{10} \longrightarrow m = 70\, kg$$.

Com isso podemos calcular a força horizontal:

$$F = m\cdot a \longrightarrow F = 70\cdot 4 \longrightarrow F = 280\, N$$.

c) No instante 10 s a velocidade é 11 m/s, portanto temos

$$E = \frac{m\cdot v^{2}}{2} \longrightarrow E = \frac{70\cdot 11^{2}}{2} \longrightarrow E = 4235\, J$$.

d) A potência é calculada por $$P = \frac{\Delta E}{\Delta t}$$. Como a energia inicial é zero, temos

$$P = \frac{4235 – 0}{7} \longrightarrow P = 605\, W$$.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *