Álgebra Linear – Projeção (exercício 2)
Exercício Seja $$w\in V=\mathbb{R}^{n}$$ tal que $$||w||_{2}=1$$. P = $$ww^{t}$$, e $$Q=I-2P$$. Demonstre os itens a seguir. a) $$P$$ é projetor ortogonal. b) $$Qw=-w$$. c)...
Exercício Seja $$w\in V=\mathbb{R}^{n}$$ tal que $$||w||_{2}=1$$. P = $$ww^{t}$$, e $$Q=I-2P$$. Demonstre os itens a seguir. a) $$P$$ é projetor ortogonal. b) $$Qw=-w$$. c)...
Sejam $$f:X \longrightarrow \mathbb{R}$$, $$a\in X’$$ e $$Y=f(X-\{a\})$$. Se $$lim_{x\to a}f(x)=L$$, então $$L\in\bar{Y}$$. Solução: Da hipótese do limite, para qualquer $$\epsilon>0$$, existe $$\delta>0$$ tal que,...
Seja $$f:\mathbb{R}\longrightarrow\mathbb{R}$$ contínua. Prove que, se $$f(x)=0$$, para todo $$x\in X$$, é certo que $$f(x)=0$$, para todo $$x\in\bar{X}$$. Solução: Seja $$x\in\bar{X}$$, e seja $$f(x)=c$$. Por...
Questão 1 Suponha que o espaço vetorial de dimensão finita $$E$$ admita a decomposição $$E=\bigoplus_{j=1}^{k} F_{j}$$, como soma direta de subespaços vetoriais. Para cada $$i\in\{1,2…,k\}$$,...
Exercícios anteriores Definição \[cond_{p}(A)=||A||_{p}\cdot||A^{-1}||_{p}\]. Assumindo que $$A_{n\times n}$$ é invertível. Exercício Dadas as matrizes invertíveis $$A$$ e $$B$$ em $$\mathbb{M}_{n\times n}$$, demonstre as propriedades a...