Matemática
Álgebra Linear – Uma demonstração do Teorema do Núcleo e da Imagem
Para a demonstração, assume-se o conhecimento sobre classes equivalência em álgebra linear. Teorema: Sejam dois espaços de dimensão finita $$V$$ e $$W$$. Seja $$\tau\in\mathcal{L}(V;W)$$, uma...
Lógica Matemática – Conjuntos e Funções (exercício 3)
Seja uma função $$f:X\longrightarrow Y$$, e sejam $$A$$ e $$B$$ subconjuntos de $$X$$. Então $$f(A\cap B)\subseteq f(A)\cap f(B)$$. Demonstração: De fato, seja $$p\in f(A\cap B)$$....
Lógica Matemática – Conjuntos e Funções (exercício 2)
Seja uma função $$f:X\longrightarrow Y$$, e sejam $$A$$ e $$B$$ subconjuntos de $$X$$. Então $$f(A\cup B)=f(A)\cup f(B)$$. Demonstração: De fato, se $$p\in f(A)\cup f(B)$$, é...
Lógica Matemática – Conjuntos e Funções (exercício 1)
Uma função $$f:X\longrightarrow Y$$ é sobrejetora, se, e somente se, para cada $$A\subset X$$, tem-se que $$Y-f(A)\subseteq f(X-A)$$. Demonstração: Assumimos que $$f$$ é sobrejetora, isto...
Lógica Matemática – Conjuntos – Famílias (exercício 1)
Seja $$(A_{n})_{n\in\mathbb{N}}$$ uma família de conjuntos e $$A = \cup_{n\in\mathbb{N}}A_{n}$$. Prove que existe uma família $$(B_{n})_{n\in\mathbb{N}}$$, com $$B_{n} \subset B_{n+1}$$ e $$A = \cup_{n\in\mathbb{N}}B_{n}$$. Solução:...