Matemática Financeira
0

Valor Presente Líquido – Exercício 3

Calcule o VPL da série do investimento de 6 prestações, a uma taxa de juros nominal de 20% ao ano, em que os 3 primeiros depósitos mensais são de R$ 4.000, os 3 últimos têm o valor de R$ 1500,00 e o depósito ocorre sempre no início do mês.



Solução:

Observe que a taxa é nominal e a capitalização é mensal, então a taxa efetiva é de $$\frac{20\%}{12} \cong 1,667\%$$ ao mês.

i) Os três primeiros depósitos formam uma série uniforme de pagamentos, e seu valor presente $$(VP_{1})$$ é

\[VP_{1}=4000\cdot\frac{(1+1,667\%)^{3}-1}{1,667\%\cdot (1+1,667%)^{3}} = R$ 11.610,76. \]

ii) Os três últimos também formam uma série uniforme de pagamentos, então seu valor presente é

\[VP_{2}=1500\cdot \frac{(1+1,667\%)^{3}-1}{1,667\%\cdot (1+1,667%)^{3}}=R\$ 4354,04. \]

Como este último valor presente encontra-se a 3 meses do início da série, precisamos descontar o coeficiente $$(1+1,667\%)^{3}$$, que resulta em $$VP’_{2}=\frac{VP_{2}}{(1+1,667\%)^{3}}= R\$ 4143,35$$.

iii) O VPL da série completa será a soma

\[VPL = VP_{1}+VP’_{2}=15.754,12\]

No Excel, usando a fórmula VPL ou NPV:







Tags:

Você pode se interessar também por…

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Preencha esse campo
Preencha esse campo
Digite um endereço de e-mail válido.
Você precisa concordar com os termos para prosseguir

Veja também
Menu