Desconto Racional – O que é? Como calcular? Exemplos resolvidos

4 min


0

A ideia de desconto racional (desconto “por dentro”) coincide com a quantidade de juros simples que um determinado valor inicial VP produzirá para atingir o valor nominal do título (VF). A fórmula do Desconto é dada por

\[D=VF\cdot\frac{i\cdot t}{1+i\cdot t}.\]

Antes de demonstrarmos a fórmula, vamos considerar dois exemplos numéricos.

Exemplo 1: Se um título tem valor nominal de R$ 5.000,00, ele concede o direito ao seu detentor de descontar o valor no prazo de vencimento em questão. Supondo uma taxa de juros mensal de 3% e o prazo de vencimento do título igual a 24 meses, qual será o valor da compra deste título, isto é, o valor no tempo $$t=0$$?

Entendemos que o valor nominal do título é o montante a juros simples e que o capital aplicado será o valor no instante zero, Logo, utilizando a fórmula do Montante Simples, obtemos

\[VP_{0}=\frac{5000}{1+24\cdot 0,03}=R\$ 2.906,99.\]

O desconto racional será a quantidade de juros, isto é, a diferença $$VF – VP_{0}= R\$ 2.093,02$$.

Exemplo 2Caso o detentor do título deseje realizar o desconto 3 meses antes do vencimento do título, qual será o montante que ele receberá? O raciocínio é semelhante ao do exemplo anterior. O valor nominal do título é o mesmo, mas queremos saber qual valor a antecipação trará se o desconto ocorrer 3 meses antes do vencimento.

Note que o valor do resgate do título 3 meses antes de seu vencimento corresponde ao cálculo do valor presente do montante de R$ 5.000,00 3 meses antes, isto é:

\[VP=\frac{5000}{1+3\cdot 0,03}=R\$ 4587,15.\]

O desconto será a diferença entre o valor nominal e o valor do resgate: $$5000 – 4587,15 = R\$ 412,84$$.

Fórmula para o Desconto Simples
Já vimos que o desconto corresponde aos juros obtidos em uma aplicação sob regime de Juros Simples, em que o montante da aplicação é o valor nominal (VF) e o principal é o valor descontado do título (VP). Isso implica que $$D=J = VP\cdot i\cdot t$$. Como o montante simples é dado por $$VP=VF\cdot\frac{i\cdot t}{1+i\cdot t}$$, substituindo a segunda equação na primeira, chegamos à fórmula

\[D=VF\cdot\frac{i\cdot t}{1+i\cdot t}.\]

Agora, mãos à obra: Exercícios Resolvidos sobre Desconto Racional Simples.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *