Mostre que, se a e 𝜆 são constantes positivas e se b é um número real arbitrário, então toda solução da equação
\[𝑦′ + 𝑎𝑦 = 𝑏*e^{−𝜆𝑡} \]
tem a propriedade de que 𝑦→0 quando 𝑡→∞.
Solução:
Mostre que, se a e 𝜆 são constantes positivas e se b é um número real arbitrário, então toda solução da equação
\[𝑦′ + 𝑎𝑦 = 𝑏*e^{−𝜆𝑡} \]
tem a propriedade de que 𝑦→0 quando 𝑡→∞.
Solução:
0 comentários