Força Elástica – Exercício 1

3 min


0

São montados três arranjos esquematizados na figura abaixo. As molas são todas iguais, com k = 100 N/m. Se m = 2 kg, determine a deformação total em cada arranjo. Considere g = 10 m/s².

Confira nossa lista de Exercícios de Força Elástica

Solução:

A) A deformação total se dá no equilíbrio de forças. No arranjo A temos apenas uma mola, logo basta igualar a força elástica com a força peso.

$$F_{A} = P \longrightarrow k\cdot x_{A} = m\cdot g \longrightarrow 100\cdot x_{A} = 2\cdot 10 \longrightarrow x_{A} = 0,2\, m$$

B) No arranjo B, temos duas molas em série. Precisamos encontrar a constante elástica equivalente. Para esse tipo de arranjo, temos a constante elástica equivalente como segue.

$$\frac{1}{k_{BE}} = \frac{1}{k_{B1}} + \frac{1}{k_{B2}} \longrightarrow \frac{1}{k_{BE}} = \frac{1}{100} + \frac{1}{100} \longrightarrow k_{BE} = 50\, N/m$$

Agora é só igualar a força elástica equivalente com a força peso.

$$F_{BE} = P \longrightarrow k_{BE}\cdot x_{BE} = m\cdot g \longrightarrow 50\cdot x_{BE} = 2\cdot 10 \longrightarrow x_{BE} = 0,4\, m$$

C) No arranjo C, temos molas em paralelo. Nesse caso basta somar as constantes elásticas para obter a constante elástica equivalente.

$$k_{CE} = k_{C1} + k_{C2} \longrightarrow k_{CE} = 100 + 100 \longrightarrow k_{CE} = 200\, N/m$$

Agora basta igualar a força elástica equivalente ao peso.

$$F_{CE} = P \longrightarrow k_{CE}\cdot x_{CE} = m\cdot g \longrightarrow 200\cdot x_{CE} = 2\cdot 10 \longrightarrow x_{CE} = 0,1\, m$$


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
1
ncurti
amei! amei!
1
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *