Logaritmos – Exercício 1

1 min


0

Sabendo que log122 = m, o valor de log616 é:

a) 1
b) 3
c) 4
d) 5
e) 6

Solução:

É dito que log122 = m. Então, aplicando-se a definição de logaritmo, temos $$12^{m}=2$$. Como $$12=2\cdot 6$$, temos $$2^{m}6^{m}=2$$, o que implica $$6^{m}=2^{1-m}$$. Observa-se que, sem sombra e dúvidas, $$m\neq 1$$.

Aplicando-se o logaritmo de base 6 nos dois lados da equação, temos

\[log_{6}(6^{m})=log_{6}(2^{1-m}).\]

Pela propriedade do tombo, a equação anterior passa a ser $$m = (1-m)log_{6}2$$, e finalmente, chegamos ao resultado de $$log_{6}2 = \frac{m}{1-m}$$.

Buscamos o valor a seguir: $$log_{6}16 = log_{6}(2^{4})=4\cdot log_{6}2 = 4\cdot \frac{m}{1-m}$$.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *