UNICAMP – A função L(x) = a.ebx fornece o nível de iluminação

2 min


0

A função L(x) = a.ebx fornece o nível de iluminação, em luxes, de um objeto situado a x metros de uma lâmpada.

a) Calcule os valores numéricos das constantes a e b, sabendo que um objeto a 1 metro de distância da lâmpada recebe 60 luxes e que um objeto a 2 metros de distância recebe 30 luxes.

b) Considerando que um objeto recebe 15 luxes, calcule a distância entre a lâmpada e esse objeto.

Solução:
a) Temos L(1) = 60 e $$L(2)=30$$. O primeiro fornece $$60 = a\cdot e^{b}$$; o segundo, $$30 =a\cdot e^{2b}$$. Se dividirmos uma expressão pela outra, obtemos

\[2=\frac{60}{30}=\frac{a\cdot e^{b}}{a\cdot e^{2b}}=e^{-b}.\]

Transformando em logaritmo, teremos $$b=-Ln 2= Ln(1/2)$$.

Substituindo esse valor na primeira equação, temos

\[a\cdot e^{Ln(1/2)}=60\longrightarrow a/2=60\longrightarrow a = 120.\]

b) Basta fazermos $$15=L(x)=120\cdot e^{Ln(1/2)\cdot x}$$, então $$(1/8)=(15/120) = e^{Ln(1/2)\cdot x}$$. Daqui, obtemos $$Ln(1/2)\cdot x = Ln(1/8) = Ln ((1/2)^{3}) = 3 Ln(1/2)$$, donde tiramos que $$x = 3$$.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
1
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *