Lógica Matemática – Teorema 2 – Filtros
Seja $$\mathcal{F}$$ um filtro das partes de $$I$$. Um filtro próprio, para o qual vale que ou $$A\in\mathcal{F}$$, ou $$A^{C}\in\mathcal{F}$$, para qualquer $$A\subset I$$, é...
Seja $$\mathcal{F}$$ um filtro das partes de $$I$$. Um filtro próprio, para o qual vale que ou $$A\in\mathcal{F}$$, ou $$A^{C}\in\mathcal{F}$$, para qualquer $$A\subset I$$, é...
Seja $$P=I-uu^{T}$$, em que $$u=e_{r}-e_{s}$$, e $$e_{i}$$ é um elemento da base canônica de $$\mathbb{R}^{n}$$. Descreva o resultado do produto matricial $$e^{t}_{j}P$$, para $$j\in\{1,..,n\}$$. Solução:...
Dada uma matriz $$A_{m\times n}$$ com entradas reais, descreva o resultado do produto $$C=E_{ik}A$$, em que $$E_{ik}=I_{m\times m}-\beta\cdot e_{i}e^{T}_{k}$$, $$\beta\in\mathbb{R}$$, $$k\in\mathbb\{1,…,m\}$$ e $$e_{i},e_{k}$$ são elementos...
O subconjunto $$\mathcal{F}\subset\mathcal{P}(I)$$ um filtro se, e somente se, vale a regra a seguir: \[A\cap B\in\mathcal{F}\Longleftrightarrow A,B\in\mathcal{F}.\] Demonstração 1) Válida a regra, demonstra-se que $$\mathcal{F}$$...
Lema Seja $$\mathcal{F}\subset\mathcal{P}(I)$$ um filtro. Seja $$B$$ um subconjunto próprio de $$I$$. Tem-se $$B\in\mathcal{F}$$ se, e somente se, existirem $$n\in\mathbb{N}$$ e uma família $$\{A_{i}\}_{i=1}^{n}\subset\mathcal{F}$$ tais...
Seja $$Gr$$ o conjunto de todos os grupos, e seja $$A=hom(G,H)$$ o conjunto de todos os homomorfismos existentes entre quaisquer grupos $$G$$ e $$H$$ em...
Exercício Julgue a afirmação: Seja $$𝐴=\left[\begin{array}{ll}1&1/y&\\y&1&\end{array}\right]\quad$$, então $$𝐴^{2}=2𝐴$$. Solução:
Exercício Julgue a afirmação: Se $$𝐴$$ e $$𝐵$$ são matrizes que comutam com a matriz $$M=\left[\begin{array}{ll} 0&-1&\\1&0&\end{array}\right]\quad$$ , então 𝐴𝐵 = 𝐵𝐴. Solução:
Exercício Julgue a afirmação: A única simultaneamente simétrica e anti-simétrica é a matriz nula. Solução:
Exercício Julgue a afirmação: Se $$A$$ e $$B$$ são matrizes $$n\times n$$, então $$(A + B)^{2} = A^{2} + 2AB + B^{2}$$. Solução:
Exercício Se $$A$$ é uma matriz $$n\times n$$ e $$A^{k}=0$$, para $$k$$ ,um inteiro positivo, mostre que \[(I_{n-A})^{(-1)}=I_{n}+A+A^{2}+…+A^{(k-1)}.\] Solução:
Questão Divisibilidade por 9. Para $$n\in\mathbb{N}$$, $$4^{n}+6n-1$$ é divisível por 9. Solução: Nota-se que, para $$n=1$$, tem-se $$4^{1}+6\cdot 1 – 1 = 9$$, que...