Teorema de Limites de Funções Compostas
Sejam $$f$$ e $$g$$ duas funções tais que a imagem da $$f$$ é um subconjunto do domínio da $$g$$. Se $$g$$ é uma função contínua...
Sejam $$f$$ e $$g$$ duas funções tais que a imagem da $$f$$ é um subconjunto do domínio da $$g$$. Se $$g$$ é uma função contínua...
Sejam $$f:X \longrightarrow \mathbb{R}$$, $$a\in X’$$ e $$Y=f(X-\{a\})$$. Se $$lim_{x\to a}f(x)=L$$, então $$L\in\bar{Y}$$. Solução: Da hipótese do limite, para qualquer $$\epsilon>0$$, existe $$\delta>0$$ tal que,...
Sejam $$lim_{n\to \infty}x_{n}=a$$ e $$lim_{n\to\infty} y_{n}=b$$. Se $$a<b$$, prove que existe $$n_{0}\in\mathbb{N}$$, tal que, para todo $$n>n_{0}$$, $$x_{n}<y_{n}$$. Solução: Dado $$\epsilon>0$$, tomamos $$\epsilon/2>0$$, então existe...
Seja $$f:\mathbb{R}\longrightarrow\mathbb{R}$$ contínua. Prove que, se $$f(x)=0$$, para todo $$x\in X$$, é certo que $$f(x)=0$$, para todo $$x\in\bar{X}$$. Solução: Seja $$x\in\bar{X}$$, e seja $$f(x)=c$$. Por...
Exercícios anteriores Definição \[cond_{p}(A)=||A||_{p}\cdot||A^{-1}||_{p}\]. Assumindo que $$A_{n\times n}$$ é invertível. Exercício Dadas as matrizes invertíveis $$A$$ e $$B$$ em $$\mathbb{M}_{n\times n}$$, demonstre as propriedades a...
Definição Definição de Norma vetorial \[||v||_{p}=(\sum^{n}_{i=1} |v_{i}|^{p})^{1/p}\]. Definição de Norma matricial \[||A||_{p}=\underset{||x||_{p}\neq 0}{sup}\frac{||Ax||_{p}}{||x||_{p}}\] Exercício Demonstre as propriedades da norma p, para matrizes $$A\in\mathbb{M}_{m\times n}(\mathbb{R})$$, $$B\in\mathbb{M}_{n\times...
Questão Mostre que, para uma sequência $$(x_{n})$$, em um espaço vetorial munido de produto interno, se $$||x_{n}||\longrightarrow ||x||$$ e $$<x_{n},x>\longrightarrow <x,x>$$, é válida a convergência...
Sejam E espaço de Banach, F espaço normado e $$T_{n}$$ ∈ $$\mathcal{L}(E, F)$$, tal que $$T_{n}(x)$$ é Cauchy em F para todo x ∈ E....
Exercício Seja $$d: M\times M\longrightarrow \mathbb{R}$$ uma função tal que $$d(x,y)=0 \Longleftrightarrow x=y$$ e $$d(x,z)\leq d(x,y)+d(z,y)$$. Prove que $$d$$ é uma métrica. Solução: a) Provaremos...
Exercício Dada uma sequência de pontos, $$(x_{1},…,x_{n})$$, num espaço métrico $$(S,d)$$, prove que $$d(x_{1},x_{n})\leq d(x_{1},x_{2})+…+d(x_{n-1},x_{n})$$. Solução: Provemos que a desigualdade é válida para $$n=4$$, com...
Questão Prove que, para todo $$X\in\mathbb{R}$$, vale $$\overline{X}=X\cup \partial(X)$$. Conclua que $$X$$ é fechado se, e somente se, $$X\supset \partial(X)$$. Solução: Se $$x\in X$$, então...
Observação (notação para a vizinhança de um ponto): $$V_{(\delta)}(x)=\{p\in\mathbb{R}; |x-p|<\delta\}$$. Questão Prove que, para todo $$X\subset\mathbb{R}$$, tem-se $$int(int(X))=int(X)$$ e conclua que $$int(X)$$ é um conjunto...