Álgebra Linear – Subespaços Vetoriais (exercício 6)
Considere o espaço vetorial real $$𝑉=\mathcal{P}_{2}(\mathbb{R})$$ e o subconjunto 𝑈={𝑝(𝑥)∈𝑉 | ∫ 𝑝(𝑥) 𝑑𝑥+2𝑝′(0)=0}. a) Mostre que o subconjunto 𝑈 é um subespaço vetorial de...
Considere o espaço vetorial real $$𝑉=\mathcal{P}_{2}(\mathbb{R})$$ e o subconjunto 𝑈={𝑝(𝑥)∈𝑉 | ∫ 𝑝(𝑥) 𝑑𝑥+2𝑝′(0)=0}. a) Mostre que o subconjunto 𝑈 é um subespaço vetorial de...
Seja $$V=\mathcal{F}(X,R)$$ o espaço vetorial de todas as funções reais definidas em um conjunto X. Fixado $$t_{0} \in X $$, mostre que o conjunto $$U=\{f(x)∈V...
Sejam v,w e u elementos de um espaço vetorial $$V$$ . Prove que é válida a lei do cancelamento: Se $$v+w =v+u$$, então $$w=u$$. Solução:
Sejam $$W_{1}$$ e $$W_{2}$$ subespaços de um espaço vetorial $$V$$ tais que $$W_{1} + W_{2} = V$$ e $$W_{1}\cap W_{2} = \{0\}$$. Determinar que, para...
Questão A demanda para um certo produto é dada por q=1000-20p, onde o preço varia no intervalo 0≤p≤50. a) Obtenha a função que dá a...
Seja $$\mathcal{F}$$ um filtro das partes de $$I$$. Um filtro próprio, para o qual vale que ou $$A\in\mathcal{F}$$, ou $$A^{C}\in\mathcal{F}$$, para qualquer $$A\subset I$$, é...
Seja $$P=I-uu^{T}$$, em que $$u=e_{r}-e_{s}$$, e $$e_{i}$$ é um elemento da base canônica de $$\mathbb{R}^{n}$$. Descreva o resultado do produto matricial $$e^{t}_{j}P$$, para $$j\in\{1,..,n\}$$. Solução:...
Dada uma matriz $$A_{m\times n}$$ com entradas reais, descreva o resultado do produto $$C=E_{ik}A$$, em que $$E_{ik}=I_{m\times m}-\beta\cdot e_{i}e^{T}_{k}$$, $$\beta\in\mathbb{R}$$, $$k\in\mathbb\{1,…,m\}$$ e $$e_{i},e_{k}$$ são elementos...
O subconjunto $$\mathcal{F}\subset\mathcal{P}(I)$$ um filtro se, e somente se, vale a regra a seguir: \[A\cap B\in\mathcal{F}\Longleftrightarrow A,B\in\mathcal{F}.\] Demonstração 1) Válida a regra, demonstra-se que $$\mathcal{F}$$...
Lema Seja $$\mathcal{F}\subset\mathcal{P}(I)$$ um filtro. Seja $$B$$ um subconjunto próprio de $$I$$. Tem-se $$B\in\mathcal{F}$$ se, e somente se, existirem $$n\in\mathbb{N}$$ e uma família $$\{A_{i}\}_{i=1}^{n}\subset\mathcal{F}$$ tais...
Questão Julgue a afirmação a seguir. Se $$f$$ for uma função real tal que $$|f(x)- f(a)|\leq 5|x – a|$$ para todos x ∈ R, então...
Questão Sabendo que, para x∈[-1;1], \[\frac{sen(x)}{x}≤f(x)≤x^{2}+1.\] Calcule $$lim_{x→0} f(x)$$. Solução: