Espaços Vetoriais – Exercícios resolvidos

2 min


0

Exercícios resolvidos sobre os axiomas de um Espaço Vetorial.

♦ Em $$E=\mathbb{R}^{2}$$, mantenhamos a definição do produto $$\alpha v$$ de um número por um vetor, mas modifiquemos, de 3 maneiras diferentes, a definição da soma $$u+v$$, dos vetores $$u=(x,y)$$ e $$v=(x’,y’)$$. Em cada tentativa, dizer quais axiomas de espaço vetorial continuam válidos, e quais são violados.
a) $$u+v=(x+y’,x’+y’)$$;
b) $$u+v=(xx’,yy’)$$;
c) $$u+v=(3x+3x’,5y+5y’)$$.
Solução.

♦ Seja V o conjunto de todos os pares ordenados (x,y) de números reais e considere o corpo dos números reais. Definamos as operações:

  • Soma: (x1,y1) + (x2,y2) = (3y1 + 3y2 ;- x1-x2).
  • Produto: c (x,y) = (3cy , -cx).

Esse conjunto forma um Espaço Vetorial?
Solução.

 

♦ Demonstre as afirmações abaixo:

 

♦ Em um espaço vetorial, $$\alpha v = \beta v$$ implica que α=β? E se $$v\neq 0_{V}$$ (zero vetorial)?
Solução.

 

♦ Sejam v,w e u elementos de um espaço vetorial $$V$$ . Prove que é válida a lei do cancelamento: Se $$v+w =v+u$$, então $$w=u$$.
Solução.

♦ Demonstre que, para $$n\in\mathbb{N}$$, $$n\cdot v = \sum^{n}_{i=1}v$$.
Solução.

 

 


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *