Logaritmo do Produto

2 min


0

A propriedade operatória do logaritmo da multiplicação é muito útil nos cálculos cotidianos. A regra diz que $$\mathbf{log_{c}(a\cdot b)=log_{c}a + log_{c}b}$$.

Exemplo
Se $$log 2\cong 0,3$$ e $$log 3 \cong 0,477$$, qual é o valor de $$log 6$$ ?
Usando a propriedade, obtemos $$log 6 = log (2\cdot 3) = log 2 + log 3 = 0,777$$.

 

Demonstração da Propriedade
Sejam $$x=log_{c}a, y=log_{c}b$$ e $$z=log_{c}(a\cdot b)$$. Aplicando a definição de logaritmo nas três igualdades anteriores, obtemos, respectivamente, $$a = c^{x}, b=c^{y}$$ e $$a\cdot b = c^{z}$$.

Agora, substitua as duas primeiras identidades na terceira equação e use a propriedade das potências para soma de expoentes em bases iguais. Então obtemos a igualdade

\[c^{x+ y}c^{x}\cdot c^{y}=c^{z}.\]

Essa igualdade é válida se, e somente se, $$x+y=z$$. Por definição de x,y e z, obtemos $$log_{c}a+log_{c}b=log_{c}(a\cdot b)$$.


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *