Subespaços Vetoriais – Exercício 7
Determine um conjunto gerador para o subespaço U={(x,y,z,t)∈R4 | x-y+z+t=0 e -x+2y+z-t=0}. Solução:
Determine um conjunto gerador para o subespaço U={(x,y,z,t)∈R4 | x-y+z+t=0 e -x+2y+z-t=0}. Solução:
Lista de exercícios resolvidos sobre subespaços vetoriais. •Considere o espaço vetorial real $$𝑉=\mathcal{P}_{2}(\mathbb{R})$$ e o subconjunto 𝑈={𝑝(𝑥)∈𝑉 | ∫ 𝑝(𝑥) 𝑑𝑥+2𝑝′(0)=0}. a) Mostre que o...
Considere o espaço vetorial real $$𝑉=\mathcal{P}_{2}(\mathbb{R})$$ e o subconjunto 𝑈={𝑝(𝑥)∈𝑉 | ∫ 𝑝(𝑥) 𝑑𝑥+2𝑝′(0)=0}. a) Mostre que o subconjunto 𝑈 é um subespaço vetorial de...
Seja $$V=\mathcal{F}(X,R)$$ o espaço vetorial de todas as funções reais definidas em um conjunto X. Fixado $$t_{0} \in X $$, mostre que o conjunto $$U=\{f(x)∈V...
Sejam $$W_{1}$$ e $$W_{2}$$ subespaços de um espaço vetorial $$V$$ tais que $$W_{1} + W_{2} = V$$ e $$W_{1}\cap W_{2} = \{0\}$$. Determinar que, para...
Sejam $$F_{1}$$ e $$F_{2}$$ subespaços vetoriais de $$E$$. Se existir algum $$a\in E$$, para o qual $$a+F_{1}=F_{2}$$, prove que $$F_{1}\subset F_{2}$$. Solução: Por definição, $$a+F_{1}=\{a+v;...
Prove que a reunião de dois subespaços vetoriais de $$E$$ é um subespaço vetorial se, e somente se, um deles estiver contido no outro. Solução:...
Seja $$V$$ o espaço vetorial das funções dos reais nos reais. Seja $$E_{p}$$ o subconjunto de $$V$$, cujas funções são pares. Seja $$E_{i}$$ o subconjunto...