Exercícios resolvidos sobre taxas relacionadas, taxa de variação e derivada.
1. Uma bola de neve está se formando de tal modo que seu volume cresça a uma taxa de 8 cm³/min. Ache a taxa segundo a qual o raio está crescendo quando a bola de neve tiver 4 cm de diâmetro. Solução.
Mais exercícios de derivadas, aqui!
2. A lei dos gases para um gás ideal à temperatura absoluta T (em kelvins), pressão P (em atmosferas) e volume V (em litros) é $$PV=nRT$$ , em que n é o número de mols de gás e $$R=0,0821$$ é a constante do gás. Suponha que, em um certo instante, $$P=8,0$$ atm, e está crescendo a uma taxa de 0,10 atm/min, e $$V=10L$$, e está decrescendo a uma taxa de 0,15 L/min. Encontre a taxa de variação de T em relação ao tempo naquele instante, se $$n=10$$ mols. Solução
3. Uma pedra cai livremente num lago parado. Ondas circulares se espalham, e o raio da região afetada aumenta a uma taxa de 16 cm/s. Qual a taxa segundo a qual a região está aumentando no instante em que o raio for de 4 cm? Solução.
4. A medida de um ângulo agudo de um triângulo retângulo está decrescendo a uma taxa de π/36 rad/s. Se o comprimento da hipotenusa for constante igual a 40cm, ache a velocidade com que a área está variando, quando a medida do ângulo agudo for (π/6) rad. (Solução).
0 comentários