Listas de Exercício (EM/Vestibular) Matemática

Matemática – Lista de Exercícios de Progressão Aritmética (P.A)

Questão

(FEI – 2017/2) João colocou sua moto à venda sem revelar o valor. Como ele gostava muito de matemática, propôs a seguinte questão para o comprador.

“O valor X da moto (em reais) coincide com o valor do vigésimo termo de uma progressão aritmética de primeiro termo 1 000 e razão 400.”

Se o comprador acertasse a questão, teria 10% de desconto sobre o valor de X na compra da moto. Se o comprador errasse, deveria pagar 10% a mais do valor de X. Márcio aceitou participar dessa negociação e acertou a questão proposta por João. Neste caso, Márcio pagou pela moto o valor de:

(A) R$ 8 600,00
(B) R$ 8 230,00
(C) R$ 7 920,00
(D) R$ 7 740,00
(E) R$ 7 220,00

Solução:

A progressão terá o seguinte termo geral: $$a_{n}=1000 + (n-1)\cdot 400 = 400n + 600$$. Daqui, calculamos $$a_{20}=400\cdot 20 + 600 = 8600$$.

Aplicando um desconto de 10% sobre este valor, o cálculo é o seguinte: $$V_{final}=8600\cdot (1-10\%)=8600\cdot 0,9 = R\$ 7.740,00$$.

Resposta: d)


Questão

(PUC-Campinas – 2016/2) Um jogo de boliche é jogado com 10 pinos dispostos em quatro linhas, como mostra a figura abaixo.


Se fosse inventado um outro jogo, semelhante ao boliche, no qual houvesse um número maior de pinos, dispostos da mesma forma, e ao todo com 50 linhas, o número de pinos necessários seria igual a

a) 1125.

b) 2525.

c) 2550.

d) 1625.

e) 1275.

Solução (clique aqui)


Questão

(UERJ – 2017) Um fisioterapeuta elaborou o seguinte plano de treinos diários para o condicionamento de um maratonista que se recupera de uma contusão:

• primeiro dia – corrida de 6 km;

• dias subsequentes – acréscimo de 2 km à corrida de cada dia imediatamente anterior. O último dia de treino será aquele em que o atleta correr 42 km.

O total percorrido pelo atleta nesse treinamento, do primeiro ao último dia, em quilômetros, corresponde a:

a) 414

b) 438

c) 456

d) 484

Solução (clique aqui)


Questão

(UNICAMP – 2015) Se ($$a_{1}$$ , $$a_{2}$$ , … , $$a_{13}$$) é uma progressão aritmética (PA) cuja soma dos termos é 78, então $$a_{7}$$ é igual a

a) 6.

b) 7.

c) 8.

d) 9.


Questão

(UNICAMP – 2014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a

a) 3,0 m²
b) 2,0 m²
c) 1,5 m²
d) 3,5 m²

Solução (clique aqui)


Questão

(UERJ – 2018) A sequência ($$a_{n}$$) é definida do seguinte modo:

Determine a média aritmética dos 51 primeiros termos dessa sequência.

Solução (clique aqui):


Questão

(UNESP – 2016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência se mantém até a última grade, que é feita com o total de 136,5 metros lineares de vigas.

O comprimento do total de vigas necessárias para fazer a sequência completa de grades, em metros, foi de

a) 4877.

b) 4640.

c)4726.

d)5195.

e)5162

Solução (clique aqui)


Questão

(UEMG – 2017) Os números 258 e 179 têm seus algarismos escritos em ordem crescente. Os números 558 e 496 não têm seus algarismos escritos em ordem crescente. Quantos são os números de três algarismos no qual esses algarismos aparecem em ordem crescente?

a) 84

b) 120

c) 504

d) 720

Solução (clique aqui)


Questão

(UNESP – 2018) A figura mostra cinco retângulos justapostos de uma sequência. Todos os retângulos possuem mesma altura, igual a 1 cm.

Sabendo que 1 m2 equivale a 10 000 cm2 e que a sequência é constituída por 100 retângulos, a figura formada tem área igual a

a) 2,5 m².
b) 4 m².
c) 5 m².
d) 2 m².
e) 4,5 m².