Exercícios Resolvidos sobre Derivadas

10 min


0

Definição de Derivada

I. Calcule as derivadas por meio da definição, caso o limite exista.

$$f(x) = x^{3}$$. (Solução)
$$f(x) = x +  \sqrt{x}$$. (Solução)
$$f(x)= sen(x)$$. (Solução)

II. Se f for uma função diferenciável e $$g(x)=xf(x)$$, use a definição de derivada para mostrar que $$g′ (x)=f(x)+xf′(x)$$.(Solução)

Equação da Reta Tangente

1. Determine a equação da reta tangente à curva $$y=x^{2}$$, em (2,f(2)). (Solução)

2. Escreva a reta tangente ao gráfico de $$f(x) = x^{2}e^{x}$$ no ponto $$(1,e)$$. Solução

3. Encontre uma equação da reta tangente à curva no ponto dado:
a) $$y=\sqrt[4]{x}$$, em (1,1), e
b) $$y = x^{4}-2x^{2}-x$$, em (1,2).
Solução

4. Sabe-se que r é uma reta perpendicular à reta 3x+y=3 e tangente ao gráfico de f(x) = x³. Determine a equação da reta r. Solução.

5. Determine β para que y=βx – 2 seja tangente ao gráfico de f(x) = x³-4x. (Solução)

Regras de Derivação

1. Derive as funções a seguir.

Regra da Cadeia

1. Derive as funções abaixo.

Várias Regras de Derivação

  • $$\frac{t\cdot e^{2t}}{Ln(3t+1)}$$. Solução.

Derivada de 2ª Ordem

Calcule as derivadas segundas das seguintes funções:

Derivação Implícita

1. Derive as funções abaixo.

 

Funções Trigonométricas Inversas

Aplicações da Derivada

Taxas de Variação

1. Uma partícula desloca-se sobre o eixo $$x$$ com função de posição (espaço) $$x(t)=3+2t-t^{2}$$, com $$t\leq 0$$. a) Qual a velocidade no instante $$t$$? a) Qual a velocidade no instante $$t$$? b) Qual a aceleração no instante $$t$$? b) Qual a aceleração no instante $$t$$? c) Estude a variação do sinal de $$v(t)$$. c) Estude a variação do sinal de $$v(t)$$. (Solução)

2. Um ponto desloca-se sobre a hipérbole $$xy=4$$, de tal modo que a velocidade de $$y$$ é $$y'(t)=\beta$$, com β constante. Mostre que a aceleração da abscissa $$x$$ é $$\frac{d^{2}x}{dt^{2}}=\frac{\beta^{2}}{8}x^{3}$$. (Solução)

3. A lei dos gases para um gás ideal à temperatura absoluta T (em kelvins), pressão P (em atmosferas) e volume V (em litros) é $$PV=nRT$$ , em que n é o número de mols de gás e $$R=0,0821$$ é a constante do gás. Suponha que, em um certo instante, $$P=8,0$$ atm, e está crescendo a uma taxa de 0,10 atm/min, e $$V=10L$$, e está decrescendo a uma taxa de 0,15 L/min. Encontre a taxa de variação de T em relação ao tempo naquele instante, se $$n=10$$ mols. (Solução)

4. A medida de um ângulo agudo de um triângulo retângulo está decrescendo a uma taxa de π/36 rad/s. Se o comprimento da hipotenusa for constante igual a 40cm, ache a velocidade com que a área está variando, quando a medida do ângulo agudo for (π/6) rad. (Solução).

Funções Marginais

4. Em uma empresa, o custo, em reais, para produzir $$q$$ unidades de televisores é dado por C(q)=0,02q³-6q²+900q+10000.
a) Obtenha a função Custo Marginal.
b) Obtenha o custo marginal aos níveis $$q=50, q=100$$ e $$q=150$$, explicando seus significados.
c) Calcule o valor real para produzir a 101ª unidade e compare o resultado com o obtido no item anterior. (Solução)

5. O custo de produção de 𝑞 relógios é dado pela equação 𝐂(𝐪)=𝟏𝟓𝟎𝟎+𝟑𝐪+𝐪². Calcule o custo marginal em q=40. (Solução)

Esboço do Gráfico de uma função

1 .Esboce os gráficos a seguir:

Máximos e Mínimos

1. Estude a função dada com relação a máximos e mínimos locais e globais:

2. Ache a menor distância da origem à reta 3x+y=6 e encontre o ponto P, sobre a reta, que esteja mais próximo da origem. Mostre que a origem está na reta perpendicular à reta dada no enunciado. Solução.

3. Um sólido será construído acoplando-se a um cilindro circular reto, de altura h e raio e, uma semiesfera de raio r. Deseja-se que a área da superfície do sólido seja 5π. Determine r e h para que o volume seja máximo. Solução.

4. Mostre que o maior retângulo tendo perímetro igual a ρ unidades é um quadrado.
Solução.

5. Qual é o retângulo de área máxima inscrito em uma circunferência de raio R?
Resposta: Um quadrado de lado R√2
Solução no vídeo (clique aqui)


Curtiu? Compartilhe com seus amigos!

0

O que achou desse exercício?

difícil difícil
0
difícil
#fail #fail
0
#fail
geeky geeky
0
geeky
ncurti ncurti
0
ncurti
amei! amei!
0
amei!
omg omg
0
omg
medo! medo!
0
medo!
lol lol
0
lol

0 comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *